忍者ブログ

[PR]東裏通

SOM=>HMM東裏通


[PR]

×

[PR]上記の広告は3ヶ月以上新規記事投稿のないブログに表示されています。新しい記事を書く事で広告が消えます。

SOM=>HMM

SOMを使ってHMMのパラメータを推定できるらしいよ。
とかいいつつまだ完全には理解できてないよ。
だから翻訳も怪しいよ。

COMPETING HIDDEN MARKOV MODELS ON THE SELF-ORGANIZING MAP
全訳

HMMの学習には segmental k-means とかいうものを使ってるらしい。
音声認識の分野では音素切り出しに使う一般的な方法のようだ。
HMMの学習法ってBaum-Welchしか知らなかった。
まだまだ勉強が足りませんなぁ。。

日本語情報が少ない。
セグメンタルK平均、セグメンタルK-means、分割K平均とか色々訳されてるし。
本文によるとBaum-Welchが全体を修正するのに対して、
segmental K-meansではViterbiアルゴリズムを使って最尤系列のみ修正するらしい。

で、近傍学習もやって、うまいこといきましたよって話らしい。
しかしこれだけじゃちょっとわからん。
博士論文
でも読むか、あとこれも読まなきゃダメなのかな?

なんか前のHMM-SOMよりもいいかも。
まだ比較してないんだけど、学習データをシフトさせてBaum-Welchかけるより
segmental k-meansで少しずつ学習していったほうが学習しやすい気がする。
だってHMM-SOMの方法って、結局リカレントネットのBPTTと変わらんし。
あ、そこでシナプス前抑制を使うわけ?

この論文って著者がその後の研究してないんだよね。
博士論文が出てるから2000年で卒業して他の研究に移ったって事だな。
こっちの人も1998年で研究テーマ変えてるし。。

もしかしてすでにこの手法はダメだってわかってるのか?

拍手[0回]

PR

Comment

お名前
タイトル
文字色
メールアドレス
URL
コメント
パスワード

Trackback

この記事のトラックバックURL:

プラグイン

カレンダー

04 2025/05 06
S M T W T F S
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

カテゴリー

最新記事

最新CM

最新TB

プロフィール

HN:
東こうじ
性別:
男性

リンク

サイトマスター

アクセス解析

バーコード

RSS

ブログ内検索

アーカイブ

カウンター